
- Upgrade to handle increased flux
- Design Goals
 - \Rightarrow flux 80 mA/hour
 - \Rightarrow Recycler cooling requires \leq 10 eV-sec, 15 π every 15 minutes
- □ Assumptions:
 - ⇒ Recycler final repository for anti-protons
 - » Stochastic cooling performance degrades with increasing density
 - » Electron cooling performance improves with increasing density
 - ⇒ Optimize for maximum flux
 - » Not maximum momentum density!
 - ⇒ Frequent transfers from Accumulator to Recycler (<30 minutes between transfers)
 - ⇒ Dependent upon incoming longitudinal phase space

Stacking terminology

- □ Stacking cycle:
 - ⇒ Accelerate to 120 GeV in MI
 - ⇒ Extract to target
 - ⇒ Transport 8 GeV to Debuncher
 - ⇒ Debunch and stochastically cool
 - ⇒ Inject beam into Accumulator
 - ⇒ RF decelerate to deposition orbit
 - \Rightarrow ~2 sec cycle
- Stacktail cooling moves beam to core

From MI to Debuncher

- □ Slip stacking at 8 GeV: 0.3 eV-sec
- □ At 120 GeV: 0.35 eV-sec
- □ ESME simulation of MI Bunch rotation with 0.35 eV-sec:

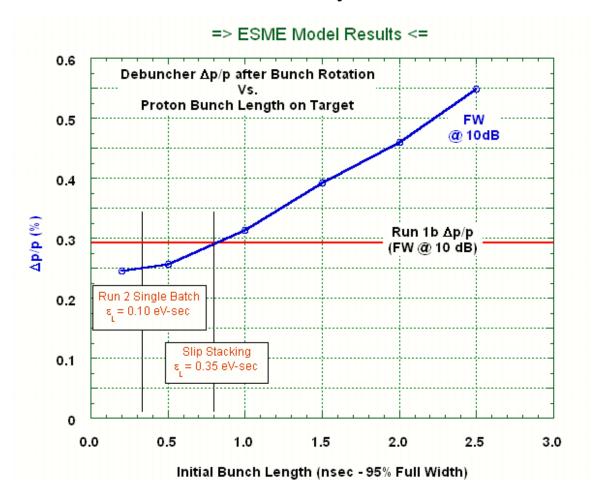
$$\Rightarrow \Delta t = 809 \text{ psec } (95\%)$$

$$\Rightarrow \Delta E_E = 0.185\% (95\% \frac{1}{2}) \text{ width}$$

- □ Beam transport after target:
 - \Rightarrow ±2% acceptance into Debuncher

Debuncher to Accumulator

Debuncher Bunch Rotation:


$$\Rightarrow \Delta E_E = 0.134\% (95\% ^{1}/_{2} \text{ width})$$

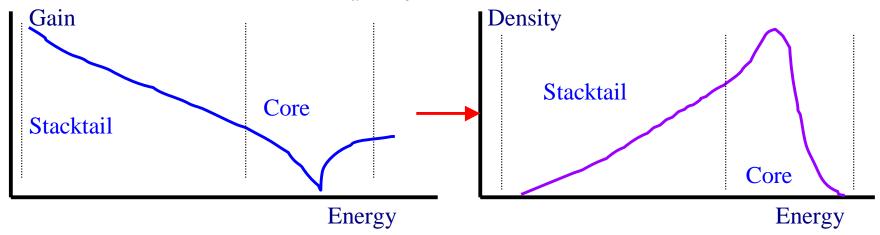
$$\Rightarrow \Delta E = 12 \text{ MeV}$$

- Debuncher Cooling Upgrades for Run IIa designed to meet IIb goals
- □ Momentum Cooling Models:
 - ⇒ Moment method calculations (which agree well with simulation model)
 - ⇒ Predict 6 MeV half width
- ESME simulations of RF deceleration preserve width

Debuncher Bunch Rotation

Momentum width in Debuncher after bunch rotation not too dependent upon MI longitudinal emittance -- dominated by non-linear rotation in Debuncher

Stochastic Stacking

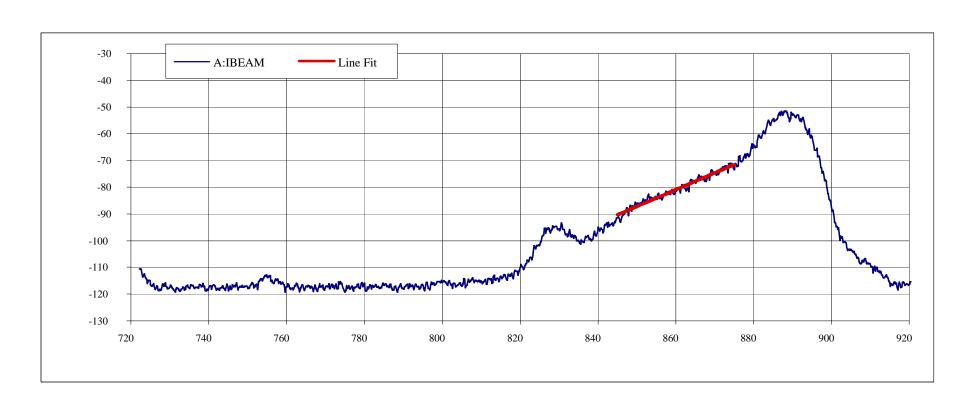

□ Simon van Der Meer solution:

 \Rightarrow Constant Flux: $\frac{\partial \psi}{\partial t} = \text{constant}$

 \Rightarrow Solution: $\frac{\partial \psi}{\partial E} = \frac{\psi}{E_d}$, where E_d characteristic of design $\psi = \psi_0 \exp\left[\frac{(E - E_i)}{E_d}\right]$

⇒ Exponential Density Distribution generated by Exponential Gain Distribution

 \Rightarrow Max Flux = $(W^2|\eta|E_d)/(f_0p \ln(2))$



Using log scales on vertical axis

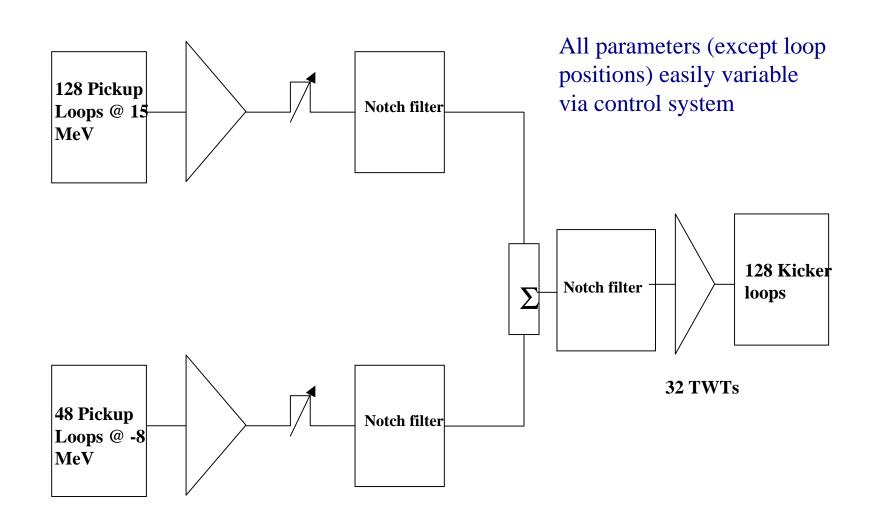
Flux for current stacktail

- ☐ Fit in stacktail region
- □ Calculate maximum flux based on slope
 - ⇒ 2-4 GHz bandwidth
 - $\Rightarrow \eta = 0.012$

- \Rightarrow 37.5 \pm 2.5 mA/hour
- ⇒ Stack rate ~3 mA/hour
- \Rightarrow Data of 1 Aug 01
- ⇒ Achieved 10 mA/hour about 2 weeks later

Creating Exponential Gain Distribution

Current intercepted by pickup


$$I = \frac{I_{beam}}{\pi} \left\{ \tan^{-1} \left[\sinh \left(\frac{\pi}{d} \left(\Delta x + \frac{w}{2} \right) \right) \right] - \tan^{-1} \left[\sinh \left(\frac{\pi}{d} \left(\Delta x - \frac{w}{2} \right) \right) \right] \right\}$$

$$\approx \frac{I_{beam}}{\pi} \exp \left(-\frac{\pi \Delta x}{d} \right) \text{ for large } \Delta x$$

- Locate pickups in region of high dispersion
- □ As particles at different energies have different flight times but electronics delays constant
 - ⇒ Location of pickups, relative gain, relative phase to give proper gain shape

Schematic diagram of stacktail electronics

Paul Derwent 7-Dec-01 8

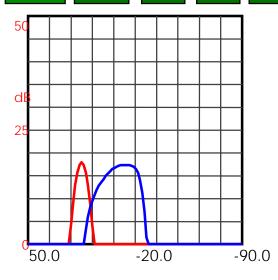
Design Goals, Specifications and Challenges

Paul Derwent 7-Dec-01 9

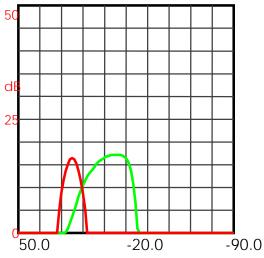
□ Goals:

- \Rightarrow Input flux of 80 mA/hour
- \Rightarrow 30 minutes
- ⇒ >95% efficiency

Specifications:


- ⇒ 2 second cycle time (slip stacking and NUMI)
- \Rightarrow 6 MeV bucket height at h=84

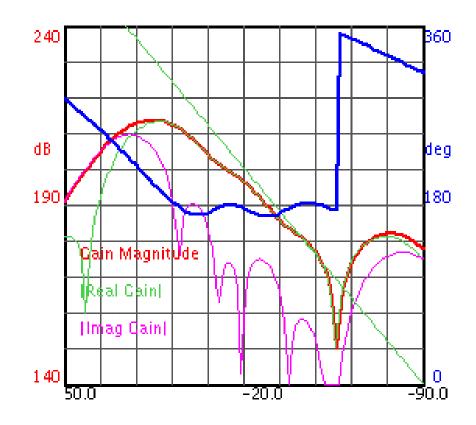
Challenges:


- ⇒ Finite momentum aperture:
 - » constant flux has to be 'stopped' and accumulated at some point
 - » Maximum density
- ⇒ Transient input:
 - » Pulses every 2 seconds
 - » Move beam off deposition orbits

Input Longitudinal Phase Space

- Moving beam off deposition orbit depends on:
 - ⇒ Gain: more efficient at higher gain
 - ⇒ Cycle time: more efficient with longer cycle time
 - ⇒ Beam width: more efficient with smaller width (assuming completely full buckets)
- Constraints:
 - ⇒ Gain: power and matching
 - ⇒ Cycle time: longer cycle, less total flux
 - ⇒ Beam width: Debuncher cooling performance

6 MeV width


8 MeV width

Gain Constraints

☐ Match stacktail gain to core gain to preserve gain slope

Ψ is local beam density F is local kicker voltage

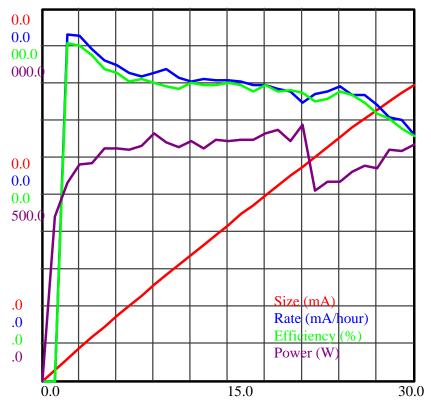
- \Rightarrow Cooling term $\alpha F\Psi$
- \Rightarrow Diffusive beam heating $\alpha F^2 \Psi$
- ⇒ As density increases (core), necessary to decrease kicker voltage (system gain) so that cooling term > diffusive heating term
- ⇒ Maximum gain for given stack size

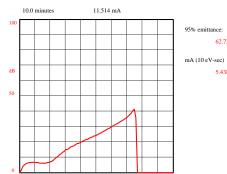
Design and Simulation Performance

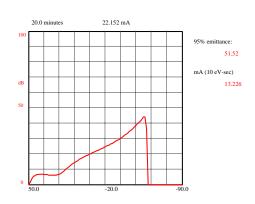
Paul Derwent 7-Dec-01

□ Design:

- ⇒ Leg 1 pickup at 15 MeV (Run IIa: 16 MeV)
- ⇒ Leg 2 pickup at -8 MeV (Run IIa: 0 MeV)
- ⇒ Gain and phase adjustments
- ⇒ Core centered at -52 MeV (Run IIa: -50 MeV)

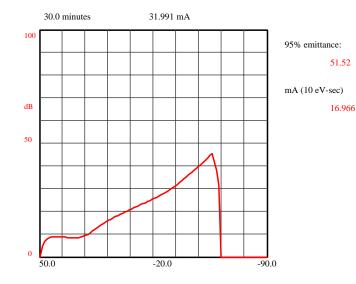

 $\Delta p = 1 \text{ MeV } "\Delta x = 0.9 \text{ mm}$


□ Simulation of 30 minutes:


- \Rightarrow ~82 mA/hour input
- ⇒ 6 and 8 MeV buckets
- \Rightarrow 2 second cycle time
- ⇒ Dropoff at 13.6 MeV (could be optimized)
- ⇒ RF phase displace all beam from dropoff + height by 2*height

Simulation Performance 8 MeV bucket

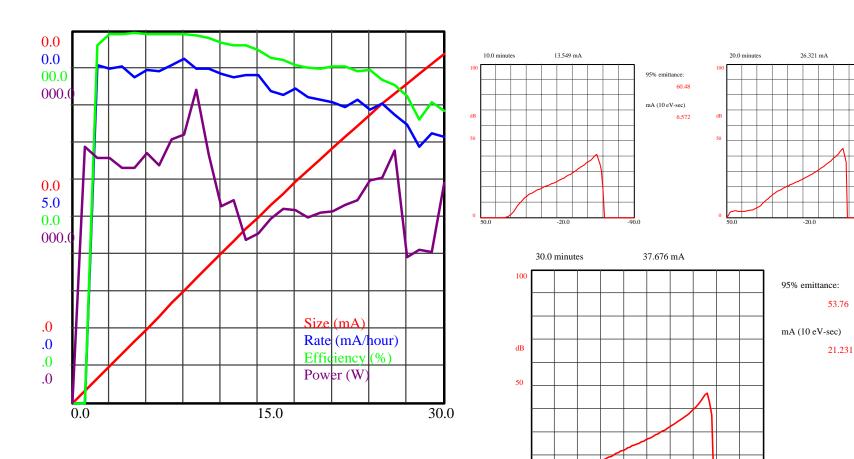
Paul Derwent 7-Dec-01 13



Mean Rate: 64.3 mA/hour

Efficiency: 79%

Mean Power: 1853 W


Simulation Performance 6 MeV bucket

-20.0

Paul Derwent 7-Dec-01 14

95% emittance:

mA (10 eV-sec)

Mean Rate: 75.7 mA/hour

Efficiency: 92.7%

Mean Power: 1150 W

Conclusions

- Bunch Rotation and Debuncher momentum cooling can achieve necessary momentum width
- □ Stack 75 mA/hour for 30 minutes with 2 sec rep rate and 6 MeV width
- □ Simulate extraction cycle and performance for next 30 minutes

Time	mA 10 eV-sec (6 MeV)	mA 10 eV-sec (8 MeV)
10 minutes	6.6	5.4
20 minutes	14.2	13.2
30 minutes	21.2	17.0